1,245 research outputs found

    Simulated breath waveform control

    Get PDF
    Subsystem was developed which provides twelve waveform controls to breath drive mechanism. Twelve position, magnetically actuated rotary switch is connected to one end of crankshaft drive, such that it makes one complete revolution for each simulated breath. Connections with common wired point are included in modifications made to standard motor speed controller

    National Foundation on the Arts and Humanities (1965-1967): Correspondence 02

    Get PDF

    A reconfigurable real-time morphological system for augmented vision

    Get PDF
    There is a significant number of visually impaired individuals who suffer sensitivity loss to high spatial frequencies, for whom current optical devices are limited in degree of visual aid and practical application. Digital image and video processing offers a variety of effective visual enhancement methods that can be utilised to obtain a practical augmented vision head-mounted display device. The high spatial frequencies of an image can be extracted by edge detection techniques and overlaid on top of the original image to improve visual perception among the visually impaired. Augmented visual aid devices require highly user-customisable algorithm designs for subjective configuration per task, where current digital image processing visual aids offer very little user-configurable options. This paper presents a highly user-reconfigurable morphological edge enhancement system on field-programmable gate array, where the morphological, internal and external edge gradients can be selected from the presented architecture with specified edge thickness and magnitude. In addition, the morphology architecture supports reconfigurable shape structuring elements and configurable morphological operations. The proposed morphology-based visual enhancement system introduces a high degree of user flexibility in addition to meeting real-time constraints capable of obtaining 93 fps for high-definition image resolution

    Breathing-metabolic simulator

    Get PDF
    Breathing-metabolic simulator was developed to be used for evaluation of life support equipment. Apparatus simulates human breathing rate and controls temperature and humidity of exhaled air as well as its chemical composition. All functions are designed to correspond to various degrees of human response

    Entropy-based feature extraction for electromagnetic discharges classification in high-voltage power generation

    Get PDF
    This work exploits four entropy measures known as Sample, Permutation, Weighted Permutation, and Dispersion Entropy to extract relevant information from Electromagnetic Interference (EMI) discharge signals that are useful in fault diagnosis of High-Voltage (HV) equipment. Multi-class classification algorithms are used to classify or distinguish between various discharge sources such as Partial Discharges (PD), Exciter, Arcing, micro Sparking and Random Noise. The signals were measured and recorded on different sites followed by EMI expert’s data analysis in order to identify and label the discharge source type contained within the signal. The classification was performed both within each site and across all sites. The system performs well for both cases with extremely high classification accuracy within site. This work demonstrates the ability to extract relevant entropy-based features from EMI discharge sources from time-resolved signals requiring minimal computation making the system ideal for a potential application to online condition monitoring based on EMI

    Naive bayes multi-label classification approach for high-voltage condition monitoring

    Get PDF
    This paper addresses for the first time the multilabel classification of High-Voltage (HV) discharges captured using the Electromagnetic Interference (EMI) method for HV machines. The approach involves feature extraction from EMI time signals, emitted during the discharge events, by means of 1D-Local Binary Pattern (LBP) and 1D-Histogram of Oriented Gradients (HOG) techniques. Their combination provides a feature vector that is implemented in a naive Bayes classifier designed to identify the labels of two or more discharge sources contained within a single signal. The performance of this novel approach is measured using various metrics including average precision, accuracy, specificity, hamming loss etc. Results demonstrate a successful performance that is in line with similar application to other fields such as biology and image processing. This first attempt of multi-label classification of EMI discharge sources opens a new research topic in HV condition monitoring

    Classification of partial discharge EMI conditions using permutation entropy-based features

    Get PDF
    In this paper we investigate the application of feature extraction and machine learning techniques to fault identification in power systems. Specifically we implement the novel application of Permutation Entropy-based measures known as Weighted Permutation and Dispersion Entropy to field Electro- Magnetic Interference (EMI) signals for classification of discharge sources, also called conditions, such as partial discharge, arcing and corona which arise from various assets of different power sites. This work introduces two main contributions: the application of entropy measures in condition monitoring and the classification of real field EMI captured signals. The two simple and low dimension features are fed to a Multi-Class Support Vector Machine for the classification of different discharge sources contained in the EMI signals. Classification was performed to distinguish between the conditions observed within each site and between all sites. Results demonstrate that the proposed approach separated and identified the discharge sources successfully

    Drive mechanism for production of simulated human breath

    Get PDF
    Simulated breath drive mechanism was developed as subsystem to breathing metabolic simulator. Mechanism reproduces complete range of human breath rate, breath depth, and breath waveform, as well as independently controlled functional residual capacity. Mechanism was found capable of simulating various individual human breathing characteristics without any changes of parts
    • …
    corecore